

Jetconf

Jetconf is an implementation of the RESTCONF [https://tools.ietf.org/html/rfc8040] protocol written in
Python 3.

Guides

	Installation

	Sample jukebox-jetconf backend

	Run Jetconf

	Generating SSL Certificates

Documentation

	Architecture
	Requirements and Restrictions

	Datastore

	Access Control

	Jetconf Server Loop

	Python Modules

	Configuration options
	Common sections

	Application-specific sections

	Backend API
	Backend package architecture

	Handler inheritance

	usr_init

	usr_datastore

	usr_conf_data_handlers

	usr_state_data_handlers

	usr_op_handlers

	us_action_handlers

	For Developers
	Development Environment

	Run from source

	Release Notes

Examples

	Jetconf Backends

	Jetconf Clients

Indices and tables

	Index

	Module Index

	Search Page

Installation

Requirements

Jetconf requires Python 3.5 or newer:

$ apt-get install python3
$ apt-get install python3-pip

Other requirements should be installed automatically during installation.

Stable version - PyPI

Stable version is the most actual package version provided by Python Package Index (PyPI):

$ python3 -m pip install jetconf

Latest version - GitHub

Latest version is the most actual source code available in the Jetconf GitHub repository. It is the master branch.

To install Jetconf from source:

$ git clone https://github.com/CZ-NIC/jetconf.git
$ cd jetconf
$ pip install -r requirements.txt
$ python3 -m pip install .

Sample jukebox-jetconf backend

jukebox-jetconf is an sample backend project created for Jetconf.
It is very useful as template for start developing a new Jetconf backend.

Installation

Clone backend project from repository:

$ git clone https://github.com/CZ-NIC/jukebox-jetconf

Install backend package:

$ cd jukebox-jetconf
$ pip install .

Now the backend package should be installed.

Configuration

In the data directory of Jetconf [https://github.com/CZ-NIC/jetconf] repository there are some example files.

	jetconf@.service: simple systemd integration

	example-config.yaml: configuration file configured to working with jukebox backend and other files in data directory

	doc-root: default root directory for Jetconf HTTP server

	ca.pem: example generated self-signed Certification Authority certificate

server certificate:

	server_localhost.crt : example generated Jetconf server certificate

	server_localhost.key: key for server_localhost.crt certificate

client certificates:

	example-client.pem: basic client certificate

	example-client_curl.pem: client certificate for usage with cURL

	example-client_browser.pfx: client certificate in PKCS #12 format for usage with browser

	pfx_passwd: password for example-client_browser.pfx certificate

Warning

Certificates provided with Jetconf are only generated to test or try Jetconf.
Never use these certificates in final application.

Easiest way to run Jetconf with jukebox backend is to clone full Jetconf repository and start working in data directory:

$ git clone https://github.com/CZ-NIC/jetconf.git
$ cd jetconf/data

Paths in example-config.conf must be updated.
If backend is installed and paths in configuration file are configured, Jetconf can be run.

Set up all on your own:

	Configuration options

	Generating SSL Certificates

Run Jetconf

command line

All logging information will be displayed in terminal:

$ jetconf -c <path_to_config_file.yaml>

systemd

In data directory there is a simple systemd service file for Jetconf.
To allow running Jetconf using systemd, this file needs to be copied to /etc/systemd/system/:

$ cp jetconf@.service /etc/systemd/system/jetconf@.service

Change the user in /etc/systemd/system/jetconf@.service to yours or create new jetconf user.

Move .yaml config file to /etc/jetconf. It must be named like config-backend_name.yaml.
For example, configuration file for jukebox backend will be config-jukebox.yaml.
It is nice to use Jetconf backend’s name without jetconf suffix.

$ cp example-config.yaml /etc/jetconf/config-jukebox.yaml

Last, Jetconf service can be started in format jetconf@backend_name.service.
For jukebox backend from above:

$ systemctl start jetconf@jukebox.service

Generating SSL Certificates

This tutorial explains how to generate self-signed certificates for the Jetconf server
and clients using OpenSSL [https://www.openssl.org/]. Example certificates can be found in data subdirectory.

Warning

Self-signed certificates are of course not considered trustworthy
by web browsers and operating systems, so they are only suitable for testing.

Two bash scripts to help generate SSL certificates are placed in /utils/cert_gen directory

	gen_server_cert.sh is used once for generating the server certificate.

	gen_client_cert.sh is used repeatedly for creating client certificates.

Their usage is described below.

Installing OpenSSL

To start with, check that OpenSSL is installed.
If not, it should be available as a package for your operating system:

$ apt-get install openssl

Certification Authority

The generated server and client certificates have to be signed by a Certification Authority (CA).
For testing purposes, though, a self-signed CA-like certificate will do.

Warning

For production uses, a trusted CA should always be used.

The easiest, but least secure, way is to use the pre-generated CA-like certificate and
private key from the files ca.pem and ca.key available from the utils/cert_gen directory.

Alternatively, the CA-like certificate and key can be generated using the procedure below.

Generate your own CA-like certificate

Make or move to your working directory:

$ mkdir my_ca_cert
$ cd my_ca_cert

Generate ca.key. see genrsa [https://www.openssl.org/docs/manmaster/man1/genrsa.html]:

$ openssl genrsa -out ca.key 2048

Generate ca.pem certificate. see x509 [https://www.openssl.org/docs/manmaster/man1/openssl-x509.html]:

$ openssl req -x509 -new -nodes -key ca.key -sha256 -days 1024 -out ca.pem

Some parameters of the certificate have to be filled in.
They are not terribly important for testing purposes. For example:

Country Name (2 letter code) [AU]:CZ
State or Province Name (full name) [Some-State]:
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Example CA
Organizational Unit Name (eg, section) []:exca.cz
Common Name (e.g. server FQDN or YOUR name) []:mail@exca.cz
Email Address []:mail@exca.cz

Server Certificate

To generate a new server certificate for JetConf that will be accepted even by
the more pedantic web browsers like Chrome, just run the provided
gen_server_cert.sh script.

The script can be used in one of the two following ways.

The command will generate a new server private key along with the certificate:

$./gen_server_cert.sh <out_file_suffix> <domain/ip>

In this case, the name of the private key file passed to the script as the <server_key> argument:

$./gen_server_cert.sh <out_file_suffix> <domain/ip> <server_key>

The script autodetects if the certificate is being issued for a domain
name or an IP address <domain/ip>, and sets the appropriate SAN value.

For example, this command will create a certificate named server_example.crt
for example.com domain with new private key server_example.key:

$./gen_server_cert.sh example example.com

If you want this certificate to be accepted by your web browser,
the issuing CA’s certificate needs to be imported to your browser.

Warning

It is strongly recommended to do not import the provided CA’s
certificate ca.pem to your production browser, as its private key is
publicly known. If you do so, someone could perform a MITM attack to
any connection with an SSL-protected website.

Client Certificate

The gen_client_cert.sh script is intended for generating client certificates
signed by the previously created CA-like certificate.

The script is used simply as follows:

$./gen_client_cert.sh <email_address>

The issued certificate will use the email address passed in the argument is used as the
emailAddress DN and commonName parameter of the client certificate.
Also, the email address identifies the client to the JetConf server by default.

For example, the command:

$./gen_client_cert.sh joe@example.net

will generate the following files:

	joe@example.net.pem - the client certificate

	joe@example.net.key - the client private key

	joe@example.net_curl.pem - the previous 2 files combined and protected by a password. Some utilities, such as curl [https://curl.haxx.se/:], expect the client certificate in this format.

	joe@example.net.pfx - PKCS#12 format for browsers. The password is the email address, i.e. joe@example.net in this case.

Architecture

	Requirements and Restrictions

	Datastore

	Access Control

	Jetconf Server Loop

	Python Modules

Jetconf is an implementation of the RESTCONF [https://tools.ietf.org/html/rfc8040] protocol for remote
management of network devices and services.

YANG 1.1 [https://tools.ietf.org/html/rfc7950] data modelling language is also fully supported.

Jetconf is written in Python 3 language and available as open source
software under the terms of the GNU GPLv3 [https://www.gnu.org/licenses/gpl.html] license.

Requirements and Restrictions

Jetconf is a compliant RESTCONF [https://tools.ietf.org/html/rfc8040] implementation supporting all mandatory features.

Although it is written in Python, it should be fast enough to support
large configuration databases with moderate rate of changes. A typical
use can may be an authoritative TLD name server in which Jetconf
covers both server management and domain provisioning.

Jetconf supports only the JSON data encoding, i.e. media types with
the +json structured syntax suffix, such as application/yang.data+json.

Jetconf supports only HTTP/2 [https://tools.ietf.org/html/rfc7540] transport. Entity tags (ETag headers) can
be generated for all data resources, whereas timestamps (Last-Modified
headers) are supported for all container-like resources, i.e. not for
individual leaf and leaf-list instances.

Datastore

Jetconf uses YANGSON [https://github.com/CZ-NIC/yangson] library, which is responsible for storage,
validation and manipulation with YANG data. This library utilizes an
in-memory persistent structure called “Zipper” where the YANG data
are kept in.

Jetconf also provides an option to serialize data into .json
file on each commit, which ensures that all configuration data will
be persistent among server startups.

Additionally, the datastore can have an access control module
associated with it. If so, every read/write operation will be verified
with this ACM.

Access Control

The current version of Jetconf implements NACM [https://tools.ietf.org/html/rfc8341] access control
system, which enables to specify fine-grained access permissions to
particular data resources.

The NACM [https://tools.ietf.org/html/rfc8341] data can only be edited by privileged users in startup Configuration options.

Jetconf Server Loop

	The client opens a secure TLS connection.

	The client is authenticated via a client certificate. The
certificate of the CA that issued the client certificate needs to
be specified in the configuration file. The e-mail or commonName field obtained
from the client certificate is henceforth used as the username,
in particular for access control. If the client cannot be
authenticated, for example because his certificate has expired or
because it was not issued by correct CA, the connection is terminated.

	The server waits for an incoming client request.

	A received request is parsed and handed over to the appropriate
component. If the media type specified is not supported (in
particular, is not +json), 415 Unsupported Media Type is sent,
If the message is otherwise invalid, 400 Bad Request is sent.

	The NACM data are queried to determine which groups the user is a
member of.

	Depending on the type of the request (read, write or RPC operation
invocation) and the Request-URI, the required permissions are
determined, and the NACM database is checked to verify that the
user possess all of them. If not, 403 Forbidden is sent.

	If the request is an RPC operation, it is invoked and an
appropriate reply or error message generated.

	If the request is a read operation, the corresponding data are retrieved
from the datastore and formatted into a reply, or an error status
code is returned.

	If the request is a write operation, the changes are applied using
a persistent structure API (so that the original unmodified
configuration remains available). The new configuration is passed to
the YANGSON library for validation. If the validation succeeds, the
new configuration is written to non-volatile memory, and passed to
server instrumentation that applies the necessary changes. An
appropriate response or error code is generated and sent.

	After finishing one of the steps 7, 8 or 9, the server returns to step 3.

Python Modules

	rest_server: a module providing the HTTP/2 and user authentication
functionality for REST operations,

	http_handlers: handlers connecting HTTP requests to datastore
operations,

	data: datastore implementation,

	nacm: basic NACM implementation,

	config: a module for reading and parsing the config file,

	helpers: static helper classes shared across modules,

	op_internal: implementation of Jetconf internal RPCs,

	errors: definition of exceptions used in Jetconf.

Configuration options

	Common sections

	GLOBAL

	HTTP_SERVER

	NACM

	Application-specific sections

Jetconf configuration is set as .conf text file in YAML format loaded by Jetconf on startup.
Jetconf configuration has two types sections, common sections and application-specific sections.

Common sections

Common sections are configuring core Jetconf settings available in any running same version of Jetconf.
It do not depend on the Jeconf backend package.

GLOBAL

Example

GLOBAL:
 TIMEZONE: "Europe/Prague"
 LOGFILE: "-"
 PIDFILE: "/tmp/jetconf.pid"
 PERSISTENT_CHANGES: true
 LOG_LEVEL: "info"
 LOG_DBG_MODULES: ["usr_conf_data_handlers", "data"]
 YANG_LIB_DIR: "yang-data/"
 DATA_JSON_FILE: "data.json"
 VALIDATE_TRANSACTIONS: true
 CLIENT_CN: false
 BACKEND_PACKAGE: "jetconf_jukebox"

Options

TIMEZONE:

Default: "GMT"

A timezone of the Jetconf server.
This is necessary because all timestamps returned in HTTP response headers need to be returned in GMT.

LOGFILE:

Default: "-"

A location of Jetconf’s log file. This can be either a path on the filesystem or a -.
If configured as a -, Jetconf server will run in foreground and all logging information will
be written to stdout (suitable for testing).

PIDFILE:

Default: "/tmp/jetconf.pid"

A location of Jetconf’s process ID file.

PERSISTENT_CHANGES:

Default: true

This option specifies if the changes commited to datastore will also be synchronized to the filesystem
(JSON file defined by the DATA_JSON_FILE option). It should be set to true in most cases, but can be turned
off for i.e. testing purposes. If turned off, the Jetconf datastore will contain exactly the same initial
data at every startup.

LOG_LEVEL:

Default: "info"

Defines the Jetconf’s log verbosity. Possible values are: debug, info, warning and error.

LOG_DBG_MODULES:

Default: [*]

When LOG_LEVEL is set to debug, this options defines list of Python modules which will write out debugging information.
This is useful to prevent flooding the log with debugging messages from irrelevant modules.
I.e. when debugging "usr_conf_data_handlers" module, you may not be interested with debug
information from the "nacm". Can be set to wildcard *.

YANG_LIB_DIR:

Default: "yang-data/"

Specifies the location of YANG library. This is the directory containing *.yang files,
it must also contain the "yang-library-data.json" file with configuration and description of
all present YANG modules.

DATA_JSON_FILE:

Default: "data.json"

A path to JSON file containing the datastore data. This file will be loaded at Jetconf startup.
If PERSISTENT_CHANGES option is set to true, all changes made to the datastore will be also stored
to this file.

VALIDATE_TRANSACTIONS:

Default: true

This option defines if the datastore data should be validated according to
YANG data model after a transaction is commited. It should be set to true except for
testing and debugging purposes.

CLIENT_CN:

Default: false

If enabled, Jetconf will use commonName to identify users.
By default Jetconf is using emailAddress to identify users.

BACKEND_PACKAGE:

Default: "jetconf_jukebox"

This option selects the package with backend bindings that Jetconf will use.
An exact name of the Python package has to be specified here,
and also the package has to be installed in Python’s environment.

HTTP_SERVER

Example

HTTP_SERVER:
 DOC_ROOT: "doc-root"
 DOC_DEFAULT_NAME: "index.html"
 API_ROOT: "/restconf"
 API_ROOT_STAGING: "/restconf_staging"
 SERVER_NAME: "jetconf-h2"
 UPLOAD_SIZE_LIMIT: 1
 LISTEN_LOCALHOST_ONLY: false
 PORT: 8443
 DISABLE_SSL: false
 SERVER_SSL_CERT: "server.crt"
 SERVER_SSL_PRIVKEY: "server.key"
 CA_CERT: "ca.pem"
 DBG_DISABLE_CERTS: false

Options

DOC_ROOT:

Default: "doc-root"

A root directory where regular files will be placed.
All HTTP GET requests outside API_ROOT are considered as requests for regular files on filesystem.

DOC_DEFAULT_NAME:

Default: "index.html"

A default filename in DOC_ROOT and its subdirectories.

API_ROOT:

Default: "/restconf"

Defines the base URI of RESTCONF data. All requests for resources inside API_ROOT will be considered as RESTCONF requests.
It is usually not needed to change this value. Example: "/restconf" -> https://localhost/restconf/ns:some_resouce

API_ROOT_STAGING:

Default: /restconf_staging

Same as above, except this is for staging data (data edited by user, but not commited yet).

SERVER_NAME:

Default: "jetconf-h2"

A value returned in "Server: " header of HTTP response.

UPLOAD_SIZE_LIMIT:

Default: 1

A maximum size of incoming data in PUT or POST body (in megabytes), which the server can handle.

LISTEN_LOCALHOST_ONLY:

Default: false

If set to true, the Jetconf HTTP server will only accept incoming connections from localhost.

PORT:

Default: 8443

The TCP port of Jetconf server.

DISABLE_SSL:

Default: false

If enabled, the user authentication system based on client certificates will be turned off and user data
will be parsed from HTTP headers. For instance, this change allows you to run Jetconf behind a
load balancer where the TLS connection is terminated and http request is forwarded to
Jetconf server with relevant headers. Can be combined with DBG_DISABLE_CERT.

SERVER_SSL_CERT:

Default: "server.crt"

The location of server SSL certificate in PEM format.

SERVER_SSL_PRIVKEY:

Default: "server.key"

The location of server SSL private key in PEM format.

CA_CERT:

Default: "ca.pem"

The location of certification authority certificate, which is used for issuing client certificates.

DBG_DISABLE_CERTS:

Default: false

If enabled, the user authentication system based on client certificates will be turned off
and every incoming connection will default to “test-user” username. This should never be turned
on in real environment, it is only intended for testing and benchmarking purposes
(no HTTP/2 benchmarking tools support client certificates at this moment).
Can be combined with DISABLE_SSL.

NACM

Example

NACM:
 ENABLED: true
 ALLOWED_USERS: ["superuser@example.com", "admin@example.com"]

Options

ENABLED:

Default: true

If set to false, NACM rules will not be applied.

ALLOWED_USERS:

Default: []

A list of superusers allowed to edit NACM data. By default no superuser is specified.

Application-specific sections

Application-specific sections are configuring additional Jetconf settings available in specific implementation Jetconf.
Depends on Jeconf backend package. Typically it configures Jetconf backend settings, that have to be defined by backend developer.

For instance, configuration required by knot-jetconf [https://github.com/CZ-NIC/knot-jetconf] backend package.

KNOT:
 SOCKET: "/tmp/knot.sock"

SOCKET:

Default: "/tmp/knot.sock"

A path to KnotDNS control socket.

Backend API

	Backend package architecture

	Handler inheritance

	usr_init

	usr_datastore

	usr_conf_data_handlers

	usr_state_data_handlers

	usr_op_handlers

	us_action_handlers

As there can be various use-case scenarios for Jetconf, bindings to a user application
are not part of Jetconf server itself, but instead they are implemented in a separate package,
so called “Jetconf backend”.

The basic idea of Jetconf’s backend architecture is that every node of the YANG schema
(i.e. container, list, leaf-list) can have a custom handler object assigned to it.
When a specific event affecting this node occurs , like configuration data being rewritten
or RESCONF operation is called, an appropriate member function of this node handler is invoked.

As there are some major differences between YANG configuration data, state data and RPCs,
the architecture of corresponding node handlers in Jetconf also has to follow these differences.

Backend package architecture

Every backend package for Jetconf server has to provide implementation of following modules.

	usr_conf_data_handlers (Handlers for configuration data)

	usr_state_data_handlers (Handlers for state data)

	usr_op_handlers (Handlers for RESTCONF operations - RPCs)

	us_action_handlers (Handlers for RESTCONF actions - operation on node)

	usr_datastore (Datastore initialization and save/load functions can be customized here)

	usr_init (Jetconf initialization)

In addition to this, backend package can also contain any other resources if necessary.
When you consider writing a custom backend, looking at the very basic demo package
jukebox-jetconf [https://github.com/CZ-NIC/jukebox-jetconf] is a good way to start.

Handler inheritance

Because some data models can be quite large, it would be difficult to manually assign
handler objects to all schema nodes. Because of this, for configuration and state data handlers,
Jetconf offers a feature called Handler inheritance.

If a node without its own handler is edited, Jetconf finds a nearest
parent node which has the handler assigned and then it calls its replace or replace_item
method. It’s up to backend developer’s decision where to place handler objects, a more fine-grained
placement will usually mean better performance (less data rewriting), at the cost of more work.

usr_init

Useful for code that has to be executed on the startup or on the end of Jetconf backend.

def jc_startup():

 # execute code on startup

def jc_end():

 # execute code on end

usr_datastore

Basic usr_datastore module without any customization.

from jetconf.data import JsonDatastore

class UserDatastore(JsonDatastore):
 pass

Customizing load() and save() functions

from jetconf.data import JsonDatastore

class UserDatastore(JsonDatastore):

 def load(self):

 # load method can be customized here

 def save(self):

 # save method can be customized here

usr_conf_data_handlers

The main purpose of configuration data handlers is to project all changes performed on a
particular data node, like creation, modification or deletion, to the user application.

A configuration node handler is implemented by creating a custom class which inherits
from either ConfDataObjectHandler or ConfDataListHandler base class depending on
the type of YANG node. The former must be used when implementing a handler for Container
or Leaf data nodes, while the latter is used for list-like types, specifically List
and Leaf-List.

ConfDataObjectHandler:

Attributes:

self.ds # type: jetconf.data.BaseDatastore
 # Can be used for accessing the datastore content from handler functions

self.schema_path # type: str
 # Contains the YANG schema path to which this handler object is registered (as string)

self.schema_node # type: yangson.schemanode.SchemaNode
 # Contains the YANG schema path to which this handler object is registered (parsed)

Arguments:

ii: # type: yangson.instance.InstanceRoute
 # Contains parsed instance identifier of the data node. Useful for determining list keys if this data node is a child of some list node.
ch: # type: jetconf.data.DataChange
 # Can be used for accessing additional edit information, like HTTP input data if needed

Handlers derived from this base class has to implement the following interface:

from jetconf.handler_base import ConfDataObjectHandler
from yangson.instance import InstanceRoute
from jetconf.data import BaseDatastore, DataChange

class MyConfDataHandler(ConfDataObjectHandler):
 def create(self, ii: InstanceRoute, ch: DataChange):

 # Called when a new node is created

 def replace(self, ii: InstanceRoute, ch: DataChange):

 # Called when the node is being rewritten by new data

 def delete(self, ii: InstanceRoute, ch: DataChange):

 # Called when the node is deleted

ConfDataListHandler:

Attributes:

self.ds # type: jetconf.data.BaseDatastore
 # Can be used for accessing the datastore content from handler functions

self.schema_path # type: str
 # Contains the YANG schema path to which this handler object is registered (as string)

self.schema_node # type: yangson.schemanode.SchemaNode
 # Contains the YANG schema path to which this handler object is registered (parsed)

Arguments:

ii: # type: yangson.instance.InstanceRoute
 # Contains parsed instance identifier of the data node. Useful for determining list keys if this data node is a child of some list node.

ch: # type: jetconf.data.DataChange
 # Can be used for accessing additional edit information, like HTTP input data if needed

Handlers derived from this base class has to implement the following interface:

from jetconf.handler_base import ConfDataListHandler
from yangson.instance import InstanceRoute
from jetconf.data import BaseDatastore, DataChange

class MyConfDataHandler(ConfDataListHandler):
 def create_item(self, ii: InstanceRoute, ch: DataChange):

 # Called when a new item is added to the list or leaf-list

 def replace_item(self, ii: InstanceRoute, ch: DataChange):

 # Called when specific list item is being rewritten

 def delete_item(self, ii: InstanceRoute, ch: DataChange):

 # Called when an item is being deleted from the list

Handler registration

Assignation of handler objects to the specific data nodes is done via registering them in
jetconf.handler_list.CONF_DATA_HANDLES handler list. Every usr_conf_data_handlers
backend module must implement the global function register_conf_handlers,
where the instantiation and registration of handler objects is done. This function is
called on Jetconf startup after datastore initialization and has the following signature.

def register_conf_handlers(ds: BaseDatastore):

 ds.handlers.conf.register(MyConfHandler(ds, "/ns:schema-path/to-desired-node"))

usr_state_data_handlers

YANG state data, in contrast to the configuration data, represents more of a current
state of the backend application. This means that they are not actually stored in
Jetconf’s datastore, but instead they has to be generated on the go. Generation of
state data is the purpose of state data handlers.

A state data handler has to acquire actual state data from backend application and generate data
content of the node where it’s assigned. The output data are formatted in Python’s representation
of JSON (using lists, dicts etc.) and their structure must be compliant with the standardized
JSON encoding of YANG data (RFC7951 [https://tools.ietf.org/html/rfc7951]).

A state node handler is implemented by creating a custom class which inherits from either
StateDataContainerHandler or StateDataListHandler, depending on the YANG node type.
This is similar to he configuration data handlers.

StateDataContainerHandler

Attributes:

self.ds # type: jetconf.data.BaseDatastore
 # Can be used for accessing the datastore content from handler functions

self.data_model # type: yangson.datamodel.DataModel
 # Reference to the current data model object

self.sch_pth # type: str
 # YANG schema path to which this handler object is registered (as string)

self.schema_node # type: yangson.schemanode.DataNode
 # Reference to the Yangson schema node object

from yangson.instance import InstanceRoute
from jetconf.handler_base import StateDataContainerHandler
from jetconf.data import BaseDatastore

class MyStateDataHandler(StateDataContainerHandler):
 def generate_node(self, node_ii: InstanceRoute, username: str, staging: bool)

 # This method has to generate content of the state data node

 return generated_content

StateDataListHandler

Attributes:

self.ds # type: jetconf.data.BaseDatastore
 # Can be used for accessing the datastore content from handler functions

self.data_model # type: yangson.datamodel.DataModel
 # Reference to the current data model object

self.sch_pth # type: str
 # YANG schema path to which this handler object is registered (as string)

self.schema_node # type: yangson.schemanode.DataNode
 # Reference to the Yangson schema node object

Methods:

from yangson.instance import InstanceRoute
from jetconf.helpers import JsonNodeT
from jetconf.handler_base import StateDataListHandler
from jetconf.data import BaseDatastore

class MyStateDataHandler(StateDataListHandler):
 def generate_list(self, node_ii: InstanceRoute, username: str, staging: bool) -> JsonNodeT:

 # This method has to generate entire list

 return generated_content

 def generate_list(self, node_ii: InstanceRoute, username: str, staging: bool) -> JsonNodeT:

 # Generates only one specific item of the list. The list key(s) of the item which needs to be generated can be resolved by processing the instance identifier passed in 'node_ii' argument.

 return generated_content

Handler registration

Assignation of state data handler objects to the specific data nodes is done via registering
them in jetconf.handler_list.STATE_DATA_HANDLERS handler list. This is similar to the configuration data.
Every usr_state_data_handlers backend module must implement the global function register_state_handlers,
where the instantiation and registration of handler objects is done. This function is called on Jetconf
startup after datastore initialization and has the following signature:

def register_state_handlers(ds: BaseDatastore):

 ds.handlers.state.register(MyStateDataHandler(ds, "/ns:schema-path/to/state/node"))

usr_op_handlers

Handlers for RESTCONF operations.

Arguments:

input_args: # type: JSON
 # Operation input arguments with structure defined by YANG model

username: # type: jetconf.data.BaseDatastore
 # Name of the user who invoked the operation

An operation handlers are implemented by adding a custom method to
the class OpHandlersContainer. Finally, this class is instantiated and its methods are assigned
to specific operation names.

from yangson.instance import InstanceRoute
from jetconf.helpers import JsonNodeT
from jetconf.data import BaseDatastore

class OpHandlersContainer:
 def __init__(self, ds: BaseDatastore):
 self.ds = ds

 def my_op_handler(self, input_args: JsonNodeT, username: str) -> JsonNodeT:

 # RPC operation Body

 # Operation output data as defined by YANG data model
 # output is not mandatory
 return output_data

Handler registration

Every usr_op_handlers backend module must implement the global function register_op_handlers,
where the class OpHandlersContainer is instantiated and its methods are tied to individual
operations. This function with following signature is called on Jetconf startup after datastore
initialization.

def register_op_handlers(ds: BaseDatastore):

 op_handlers_obj = OpHandlersContainer(ds)
 ds.handlers.op.register(op_handlers_obj.my_op_handler, "ns:operation")

us_action_handlers

Handlers for RESTCONF actions.

Arguments:

ii: # type: yangson.instance.InstanceRoute
 # Contains parsed instance identifier of the data node. Useful for determining list keys if this data node is a child of some list node.

input_args: # type: JSON
 # Operation input arguments with structure defined by YANG model

username: # type: jetconf.data.BaseDatastore
 # Name of the user who invoked the operation

An action handlers are implemented by adding a custom method to
the class ActionHandlersContainer. Finally, this class is instantiated and its methods are assigned
to specific action names and node path.

from yangson.instance import InstanceRoute
from jetconf.helpers import JsonNodeT
from jetconf.data import BaseDatastore

class ActionHandlersContainer:
 def __init__(self, ds: BaseDatastore):
 self.ds = ds

 def my_action_handler(self, ii: InstanceRoute, input_args: JsonNodeT, username: str) -> JsonNodeT:

 # Action Body

 # Action output data as defined by YANG data model
 # output is not mandatory
 return output_data

Handler registration

Every usr_action_handlers backend module must implement the global function register_action_handlers,
where the class ActionHandlersContainer is instantiated and its methods are tied to individual
actions. This function with following signature is called on Jetconf startup after datastore
initialization.

def register_action_handlers(ds: BaseDatastore):
 act_handlers_obj = ActionHandlersContainer(ds)
 ds.handlers.action.register(act_handlers_obj.my_action_handler, "/ns:schema-path/to/action/node")

For Developers

	Development Environment

	Run from source

Warning

It is highly recommended to set up a virtual environment for Jetconf
development. The following procedure uses the venv module for this
purpose (it is included in the standard Python library since
version 3.3).

Development Environment

	Install the latest stable Python3 version.

	Clone the Jetconf project in a directory of your choice:

$ git clone https://github.com/CZ-NIC/jetconf.git

	Create the virtual environment:

$ python3 -m venv jetconf

	Activate the virtual environment:

$ cd jetconf
$ source bin/activate

	Install required standard packages inside the virtual environment:

$ make install-deps

If you are prompted to upgrade pip, you can do that, too.

When you are inside the virtual environment, the shell prompt should change to
something like:

(jetconf) $

To leave the virtual environment, just do:

$ deactivate

Tip

The virtual environment can be entered anytime later by executing step 4.
The steps preceding it need to be performed just once.

The setup described above has a few consequences that have to be kept in mind:

	Any project files that need to go to bin (executable Python scripts),``include`` or lib have to be added as exceptions to .gitignore, for example:

!bin/jetconf

	After adding a new Python module dependency, it is necessary to run:

$ make deps

and commit the new content of requirements.txt.

Run from source

For development purposes, Jetconf can also be started directly
from git repository with run.py script:

$./run.py -c <path_to_config_file.yaml>

Release Notes

	0.3.6

0.3.6

Added

	Root Resource Discovery: https://tools.ietf.org/html/rfc8040#section-3.1

	DISABLE_SSL and CLIENT_CN options: https://github.com/CZ-NIC/jetconf/pull/8

	RESTCONF actions: https://tools.ietf.org/html/rfc8040#section-3.6

	simple systemd unit: https://github.com/CZ-NIC/jetconf/blob/master/data/jetconf%40.service

Jetconf Backends

	jukebox-jetconf [https://github.com/CZ-NIC/jukebox-jetconf]

	knot-jetconf [https://github.com/CZ-NIC/knot-jetconf]

Jetconf Clients

Useful links:

	Generating SSL Certificates

	Configuration options

cURL

	cURL [https://curl.haxx.se/:]

	cURL GitHub [https://github.com/curl/curl]

A Swiss-knife tool for HTTP/2.

View data in a terminal with cURL

User’s certificate with _curl suffix in .pem format is needed.

After this command you should get some data from Jetconf server in json. Do not forget to set <path_to_pem_cert> and <jetconf server ip address>:

$ curl --http2 -k --cert-type PEM -E <path_to_pem_cert> -X GET https://<jetconf_server_ip_address>:8443/restconf/data

If DISABLE_SSL and CLIENT_CN are both set to true, the following command can be used. <username> is sent in HTTP header:

$ curl --http2-prior-knowledge -H "X-SSL-Client-CN: <username>" -X GET http://<jetconf_server_ip_address>:8443/restconf/data

Jetscreen

	Jetscreen Page [https://jetconf.pages.labs.nic.cz/jetscreen]

	Jetscreen Source [https://gitlab.labs.nic.cz/jetconf/jetscreen]

A prototype of an interactive graphical Jetconf client written in Angular 2.
Works only with the JetConf implementation.

View data with Jetscreen

User’s certificate in .pfx format must be imported to the browser.

	Open public Jetscreen Page [https://jetconf.pages.labs.nic.cz/jetscreen]

	Enter your Jetconf server URL and press enter or click the Reset button. You may be prompted to select a user certificate.

	Top-level data containers should then appear.

Index

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Jetconf

 		
 Installation

 		
 Requirements

 		
 Stable version - PyPI

 		
 Latest version - GitHub

 		
 Sample jukebox-jetconf backend

 		
 Installation

 		
 Configuration

 		
 Run Jetconf

 		
 command line

 		
 systemd

 		
 Generating SSL Certificates

 		
 Certification Authority

 		
 Generate your own CA-like certificate

 		
 Server Certificate

 		
 Client Certificate

 		
 Architecture

 		
 Requirements and Restrictions

 		
 Datastore

 		
 Access Control

 		
 Jetconf Server Loop

 		
 Python Modules

 		
 Configuration options

 		
 Common sections

 		
 GLOBAL

 		
 HTTP_SERVER

 		
 NACM

 		
 Application-specific sections

 		
 Backend API

 		
 Backend package architecture

 		
 Handler inheritance

 		
 usr_init

 		
 usr_datastore

 		
 usr_conf_data_handlers

 		
 ConfDataObjectHandler:

 		
 ConfDataListHandler:

 		
 Handler registration

 		
 usr_state_data_handlers

 		
 StateDataContainerHandler

 		
 StateDataListHandler

 		
 Handler registration

 		
 usr_op_handlers

 		
 Handler registration

 		
 us_action_handlers

 		
 Handler registration

 		
 For Developers

 		
 Development Environment

 		
 Run from source

 		
 Release Notes

 		
 0.3.6

 		
 Added

 		
 Jetconf Backends

 		
 Jetconf Clients

 		
 cURL

 		
 View data in a terminal with cURL

 		
 Jetscreen

 		
 View data with Jetscreen

_static/up-pressed.png

_static/up.png

_static/plus.png

